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Outline

● Introduction to problem: detection of duplicate code
● Primer on types of duplicate code
● Our approach: machine learning on Abstract Syntax 

Trees (ASTs)
● Results
● Future work
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DejuVu: A Map of Code Duplication on GitHub (Lopes et al., Proc. ACM Program. Lang. (1), 2017)

http://janvitek.org/pubs/oopsla17b.pdf
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● Type 0: completely identical
● Type 1: only difference is in comments and whitespace
● Type 2: can also include variations in identifier names 

and literal values
● Type 3: syntactically similar with differences as the 

statement level (can be added, removed, or modified)
● Type 4: syntactically different but semantically similar

Code Duplication Primer
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How similar are 
these 

functions?
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ASTs are Directed, Acyclic Graphs
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ASTs to Graphs
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ASTs to Graphs (cont.)
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Graph calculations are 
typically done through the 
adjacency matrix...
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...which, really, are just 
(binary)  images!
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Adjacency Matrix Sizes
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General Workflow

● Identify two files or functions with potential clone 
from metadata files

● Convert adjacency JSON to images
● Combine adjacency images two a single “clone 

image”
● Model!

○ file : file
○ function : function
○ Keras convolutional neural network

14



the best way to build and ship software

Sample file:file Clone Image
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file:file Model Results

16

Total numbers of files:

Total training neg:  5000
Total training type3:  8220
Total validation neg:  2500
Total validation type3:  4214
Total test neg:  2500
Total test type3:  4126

Test accuracy: 0.925
Test loss: 0.210
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Sample function:function Clone 
Image
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function:function Model Results
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Total numbers of files:

Total training neg:  27966
Total training type3:  24909
Total validation neg:  13982
Total validation type3:  12454
Total test neg:  13984
Total test type3:  12454

Test accuracy: 0.977
Test loss: 0.066
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Adding Noise (1%)
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function:function Noisy Model 
Results
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Total numbers of files:

Total training neg:  27966
Total training type3:  24909
Total validation neg:  13982
Total validation type3:  12454
Total test neg:  13984
Total test type3:  12454

Test accuracy: 0.888
Test loss: 0.349
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● Clone detection
○ Current approach is O(n2)

■ How to get out of this?

○ Expand out to Type 4
■ With what training set?

● Graphs in general
○ All of GitHub data can be 

represented as a graph!

21

Future Work
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Thank You!

cj2001@github.com
cj2001@gmail.com

@cjisalock


