
the best way to build and ship software

GitHub and Deep Learning on Graphs of Code

Clair J. Sullivan, PhD
Machine Learning Engineer, GitHub

the best way to build and ship software

Outline

● Introduction to problem: detection of duplicate code
● Primer on types of duplicate code
● Our approach: machine learning on Abstract Syntax

Trees (ASTs)
● Results
● Future work

3

the best way to build and ship software 4

DejuVu: A Map of Code Duplication on GitHub (Lopes et al., Proc. ACM Program. Lang. (1), 2017)

http://janvitek.org/pubs/oopsla17b.pdf

the best way to build and ship software

● Type 0: completely identical
● Type 1: only difference is in comments and whitespace
● Type 2: can also include variations in identifier names

and literal values
● Type 3: syntactically similar with differences as the

statement level (can be added, removed, or modified)
● Type 4: syntactically different but semantically similar

Code Duplication Primer

5

the best way to build and ship software

● Type 0: completely identical
● Type 1: only difference is in comments and whitespace
● Type 2: can also include variations in identifier names

and literal values
● Type 3: syntactically similar with differences as the

statement level (can be added, removed, or modified)
● Type 4: syntactically different but semantically similar

Code Duplication Primer

6

the best way to build and ship software 7

How similar are
these

functions?

the best way to build and ship software

ASTs are Directed, Acyclic Graphs

8

the best way to build and ship software

ASTs to Graphs

9

the best way to build and ship software

ASTs to Graphs (cont.)

10

the best way to build and ship software 11

Graph calculations are
typically done through the
adjacency matrix...

the best way to build and ship software 12

...which, really, are just
(binary) images!

the best way to build and ship software

Adjacency Matrix Sizes

13

the best way to build and ship software

General Workflow

● Identify two files or functions with potential clone
from metadata files

● Convert adjacency JSON to images
● Combine adjacency images two a single “clone

image”
● Model!

○ file : file
○ function : function
○ Keras convolutional neural network

14

the best way to build and ship software

Sample file:file Clone Image

15

the best way to build and ship software

file:file Model Results

16

Total numbers of files:

Total training neg: 5000
Total training type3: 8220
Total validation neg: 2500
Total validation type3: 4214
Total test neg: 2500
Total test type3: 4126

Test accuracy: 0.925
Test loss: 0.210

the best way to build and ship software

Sample function:function Clone
Image

17

the best way to build and ship software

function:function Model Results

18

Total numbers of files:

Total training neg: 27966
Total training type3: 24909
Total validation neg: 13982
Total validation type3: 12454
Total test neg: 13984
Total test type3: 12454

Test accuracy: 0.977
Test loss: 0.066

the best way to build and ship software

Adding Noise (1%)

19

the best way to build and ship software

function:function Noisy Model
Results

20

Total numbers of files:

Total training neg: 27966
Total training type3: 24909
Total validation neg: 13982
Total validation type3: 12454
Total test neg: 13984
Total test type3: 12454

Test accuracy: 0.888
Test loss: 0.349

the best way to build and ship software

● Clone detection
○ Current approach is O(n2)

■ How to get out of this?

○ Expand out to Type 4
■ With what training set?

● Graphs in general
○ All of GitHub data can be

represented as a graph!

21

Future Work

the best way to build and ship software 22

Thank You!

cj2001@github.com
cj2001@gmail.com

@cjisalock

