Valmet Industrial Internet & Snowflake - learnings
Valmet

Leading process technologies, automation and services for the pulp, paper and energy industries
This is Valmet

- Market's widest offering combining process technologies, services and automation
- Research and development spend EUR 64 million in 2017

Unique offering
Strong global presence
Market leadership
Leader in sustainability

- Leading market position in all markets
- Pulp
- Energy
- Board
- Tissue
- Paper
- Services
- Automation
- Pulp and Energy
- Paper

- 120 service centers
- 87 sales offices
- 36 production units
- 16 R&D centers
- 12,000 professionals

EMEA
China
North America
Asia-Pacific
South America

- Five consecutive years in Dow Jones Sustainability Index
- Three consecutive years in Ethibel Sustainability Index
- A-rating in CDP climate program 2017

#1–2
#1–3
#1
8,000
1,700
1,200
700
500
Global customer base

Valmet is a registered trademark of Valmet Corporation. Other trademarks appearing here are trademarks of their respective owners.
Process technology, services and automation

Valmet’s unique offering differentiates the company from its competitors

Paper
- Board, paper and tissue production lines
- Rebuilds
- Stand-alone products

Pulp
- Wood and pulp handling
- Fiber processing
- Recovery

Energy
- Heat and power generation
- Air emission control
- Biofuels

Services
- Spare parts and components
- Maintenance and shutdown services
- Outsourcing services
- Production consumables
- Process support and optimization

Automation
- Distributed Control Systems (DCS)
- Quality Management Systems (QMS)
- Analyzers and measurements
- Industrial Internet solutions
Valmet Industrial Internet
A meaningful dialogue with data brings tangible results

Valmet Industrial Internet

Dialogue with data:

• Combining process and business data from different mill or plant systems
• Leveraging advanced analytics and Valmet’s know-how to create new data driven applications
• Providing applications for operator assistance and new set points for the automation system

Results

- Reduced raw material and energy cost
- Reduced downtime and unplanned stops
- Improved product quality

© Valmet | Industrial Internet
Key elements of Valmet Industrial Internet

Industrial Internet applications
From analytical applications for reliability and performance to Advanced Process Controls, information management and process simulators.

Valmet Performance Center
Provides remote support, monitoring and data analysis and access to Valmet’s expert network.

Valmet Customer Portal
A digital, personalized collaboration space between you and Valmet.

Intelligent machines and automation
A solid data source for Industrial Internet solutions.

Solution ecosystem
Brings leading industry players and innovative start-ups together to co-create new value-adding data driven services.
Today, customers are extensively utilizing our Industrial Internet capabilities

- Online connections with customers
- Performance agreements with remote connections
- Customers from 13 countries served from Board & Paper Performance Center in the last 6 months
- Co-creation of advanced analytics with customers

- Customer industry specific Valmet Performance Centers
- Regional Performance Centers operational in China and North America
- Advanced process control installations
- Online connections with customers
- Valmet’s competence network
- Valmet experts

- 5
- 2
- 350
- 540
- 90
- 46
- Ongoing
Industrial Internet case example:
Paper strength prediction combined with advanced process controls

Challenge: In the paper production process, there are still several quality variables, which can’t be measured and controlled until the product is manufactured.

Solution:
• A decision support application for the operator to control stock preparation based on predicted paper strength level to minimize raw material cost.
• Remote service is in key role to maintain the application.

Example results from magazine paper:
• Real time information on paper strength level has enabled operator to control blending to allow 1-2% savings in kraft consumption (~1M€ per year)

Kraft amount difference inside the target window (max and min): 3 – 4% → 3.1 – 4.1 MEUR / Year
Industrial Internet case example: New performance-based services relying on data analytics and remote services

Challenge:
- Web breaks are causing a lot of unplanned operational downtime in the paper industry.
- In most cases, the operator does not know the real root cause.
- There is information value, if you can predict them, but monetary value comes via preventing them happening.

Solution:
- An analytical application that predicts upcoming sheet breaks in the process and communicates with operators through specific user interface.
- The application also illustrates the root cause (contributing variables) for predicted web break.

Results:
- Mill 1. 50% web break capture rate (2h in advance).
- Mill 2. 62% web break capture rate (2h in advance).
Valmet Industrial Internet Platform
Valmet Industrial Internet platform components
based on certified and secure world-leading technologies
Valmet Industrial Internet in Cloud

Valmet automation and other mill systems (MES, ERP etc.)

Intelligent Edge

SFTP push-only connection

Incoming data storage (S3)

Back-end Virtual Private Cloud (VPC)

SFTP server

Streaming data analytics (EMR and Lambda)

API Gateway

Cognito

Dashboards

Tableau

Serverless Web applications

Front-end VPC

Analytics VPC

Servers for Analytics

Secure site-2-site VPN connections

Strong authentication at portal

Strong authentication with AD

Valmet office network

Valmet Customer Portal

© Valmet | Industrial Internet

AWS IAM

Amazon CloudWatch

AWS CloudFormation

AWS CloudTrail

AWS IoT (mqtts)

S3 API (https)
Data sources and processing (partial view)

Product data
- PDM
- Aton
- Installed Base Manager

Compass
- Customers
- Equipment
(- production lines etc)

Customer Production data
- Process data (DCS, e.g. DNA)
- Scalar, profile, ...
- Lab data
- Events, alarms, ...
- MES, ERP, etc.

Raw process data
- 10 – 1000+ sites
- 100 - 10000+ tags/sec-min
- 0.1 – 10+ GB/site/day

Data "standardization" process

SalesForce
- Users
- Groups
- RBAC (from AWS)

AWS DynamoDB
- RBAC

MDS
- TagMaster

S3

Data sources and processing (partial view)
Challenge & Snowflake
Timeline for Valmet Industrial Internet platform evolution

- **2016**: MVP
- **2017**: Platform
- **2018**: Solutions
- **2019**: Security
 - Delivery capability
 - Connectivity
 - Analytics
 - Scaling operations
Our challenge late 2017 when building the platform

The setup in MVP / first platform version was complex and poorly performing although the amount of data was fairly limited (less than 200 GB)

With then selected technologies we had significant delays in querying data for visualization (up to 1 minute)

After analysis we decided to renew both data visualization and database technologies we use > cost of switching still small in the early implementation
Selecting new database tech: Data as a basis of selection

Scalar data from one line from one mill / year
- 900m rows
- 75 GB

Profile data from one line from one mill / year
- 100m rows
- 15 GB

Data from 200 production lines would mean about 18 TB of compressed data / year

Potentially hundreds of concurrent simultaneous queries from thousands of end users

Most of the data comes from sensors. Multiple sources for data and data coming in constantly.
Many data consumers. Query performance should not be affected by the number of parallel queries.
Only small portion of the data comes from internal systems.

18 March, 2019
Testing performance: Data Platform / Queries

Query performance: Snowflake vs. Athena vs. Redshift vs. Redshift Spectrum

Test case:
- Snowflake database size X-Small (Snowflake)
- Redshift cluster with 4 nodes (dc2.large) (Redshift, Redshift Spectrum)
- Athena is serverless
- Test table with 11,857,626 rows.
Testing performance: Data Platform / Queries

Query performance: Snowflake vs. Athena vs. Redshift Spectrum

Test case:

- Snowflake database size X-Small (Snowflake)
- Redshift cluster with 4 nodes (dc2.large) (Redshift, Redshift Spectrum)
- Athena is serverless
- Tested with table with 6,881,759,701 rows.
- Redshift run out of disk space during tests.
Data platform / Queries

Pre-Tableau dashboard performance (QCS KPI)

Test cases:
- Redshift 4 node cluster (dc2.large)
- Snowflake XS warehouse
- Test Case 1: Paper and board KPI old / Home page
- Test Case 2: Paper and boar KPI old / Production
- Test Case 3: QCS / Copy of IQ MD Basis Weight Reel Detailed Trend. Utilizing Google chart
<table>
<thead>
<tr>
<th>Concurrency</th>
<th>Performance</th>
<th>Support for heterogeneous data</th>
<th>Scalability</th>
<th>Cost savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Snowflake separates storage from the data computation.</td>
<td>• Snowflake is the fastest storage tested in the most important test cases.</td>
<td>• Snowflake implements a “schema-on-read” functionality allowing semi-structured data such as JSON, XML, and AVRO to be loaded directly into a traditional relational table.</td>
<td>• Possibility of auto-scaling, multi-cluster warehousing to seamlessly increase compute resources during peak load.</td>
<td>• No need for additional / separate clusters for loading and reading</td>
</tr>
<tr>
<td>• Different user groups can have their own virtual warehouses and not get affected by other user groups queries.</td>
<td>• For some use cases there are faster solutions in the market, but Snowflake was the best fit for us in terms of overall performance.</td>
<td>• The semi-structured data can be queried using SQL without worrying about the order in which objects appear.</td>
<td>• Data remains fully accessible during scaling.</td>
<td>• No need for additional / separate clusters for dev and test</td>
</tr>
<tr>
<td>• Data integration to database can also be separated to different virtual warehouses (even to the same table), so the integration won’t affect the consumption.</td>
<td></td>
<td></td>
<td>• No need for separate platform for hot / warm / cold data</td>
<td>• No need for engineering resources to tune performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Storage costs only $25 / TB / month</td>
</tr>
</tbody>
</table>