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Friction to production
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Which NoSQL database would 
you recommend for this use 
case? It won’t matter. Use something 

that you are used to. MySQL, 
Oracle?

Well, I’d prefer something else.

?

If we use an RDBMS, Ops have 
rules and opinions that slow us 
down.
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Distance to production
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What are your data scientists up 
to?

They have received a data 
dump and built a model.

We will hand it off to a 
developer team, who hands it 
off to operations when the 
model is translated to Java.

Great, that is the first 1%. 
What’s next?
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Risky operations
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How to I test the pipeline?

You temporarily change the 
output path and run manually.

Don’t do that.

What if I forget to change path?
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Disrupted or disruptor
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Operational 
risk

Silos

Friction
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Digital revolution steam engines
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Data ML AI

Internet Web Cyber-

Micro-
processor

PC AI
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Properties of disruptors
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Sustained ROI 
from machine 

learning

Short time 
from idea to 
production 

Homogeneous 
data platform

Data internally 
democratised

Major cloud + 
open source

Organisation 
aligned by use 

case

Data 
processing 
pipelines

Diverse teams: 
data science, 

dev, ops
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DataOps
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Sustained ROI 
from machine 

learning

Short time 
from idea to 
production 

Homogeneous 
data platform

Data internally 
democratised

Major cloud + 
open source

Organisation 
aligned by use 

case

Data 
processing 
pipelines

Diverse teams: 
data science, 

dev, ops

Purpose

Context

Means

Building data 
processing 
software

Running data 
processing 
software
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Big data - a collaboration paradigm
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Stream storage

Data lake

Data 
democratised
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Data pipelines
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Data lake
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Nearline

● Stream storage (Kafka)
● Asynchronous event 

processing
● 10 ms - 1 hour

Data integration timescales
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Job

Stream

Offline

● File storage (Hadoop)
● Asynchronous batch 

processing
● 10 minutes - 

Online

● SOA / microservices
● Synchronous RPC
● 1-100 ms

Stream

Job

Stream
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Upgrade

● Careful rollout
● Risk of user impact
● Proactive QA

Operational manoeuvres - online
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Service failure

● User impact
● Data loss
● Cascading outage

Bug

● User impact
● Data corruption
● Cascading corruption
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Data platform overview
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Data lake

Cold 
store

Service

Service

Online
services

Offline
data platform

Batch
processing
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Data platform overview
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Data lake

Cold 
store

Dataset
Job

Service

Service

Online
services

Offline
data platform

Batch
processing



www.mimeria.com

Data platform overview
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Data lake

Cold 
store

Dataset
Pipeline

Service

Service

Online
services

Offline
data platform

Job

Workflow
orchestration

(Luigi, Airflow)

Online
services

Service

Data feature
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Operational manoeuvres - offline
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Upgrade

● Instant rollout
● No user impact
● Reactive QA

Service failure

● Pipeline delay
● No data loss
● No downstream impact

Bug

● Temporary data 
corruption

● Downstream impact
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Production critical upgrade
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● Dual datasets during transition

● Run downstream parallel pipelines

○ Cheap

○ Low risk

○ Easy rollback

● Easy to test end-to-end

○ Upstream team can do the change No dev & staging environment needed!

∆?
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Life of an error, batch pipelines
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● Faulty job, emits bad data

1. Revert serving datasets to old
2. Fix bug
3. Remove faulty datasets
4. Backfill is automatic (Luigi)
Done!

● Low cost of error

○ Reactive QA

○ Production environment sufficient
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Operational manoeuvres - nearline
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Upgrade

● Swift rollout
● Parallel pipelines
● User impact, QA?

Service failure

● Pipeline delay
● No data loss
● Downstream impact?

Bug

● Data corruption
● Downstream impact

Job

Stream

Stream

Job

Stream

Job

Stream

Stream

Job

Stream

Job

Stream

Stream

Job

Stream
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Life of an error, streaming
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● Works for a single job, not pipeline. :-(

Job

StreamStream Stream

Stream Stream Stream

Job

Job

Stream Stream Stream

Job

Job Job

Reprocessing in Kafka Streams
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Deployment example, cloud native
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source 
repo Luigi DSL, jars, config

my-pipe:7

Luigi
daemon

Worker
Worker

Worker
Worker

Worker
Worker

Worker
Worker

Redundant cron schedule, 
higher frequency 

kind: CronJob
spec:
  schedule: "10 * * * *"
  command: "luigi --module mymodule MyDaily"

Docker image Docker registry

S3 / GCS

Dataproc / 
EMR
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Monitoring timeliness, examples
● Datamon - Spotify internal
● Twitter Ambrose (dead?)
● Airflow
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Measuring correctness: counters
● Processing tool (Spark/Hadoop) counters

○ Odd code path => bump counter
○ System metrics

Hadoop / Spark counters DB

Standard graphing tools

Standard 
alerting 
service
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Measuring correctness: pipelines
● Processing tool (Spark/Hadoop) counters

○ Odd code path => bump counter
○ System metrics

● Dedicated quality assessment pipelines

DB

Quality assessment job

Quality metadataset (tiny)

Standard graphing tools

Standard 
alerting 
service
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Machine learning operations
● Multiple trained models

○ Select at run time
● Measure user behaviour

○ E.g. session length, engagement, funnel
● Ready to revert to

○ old models
○ simpler models

Measure interactionsRendez-
vous

DB

Standard 
alerting 
service

Stream Job
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Nearline

Data processing tradeoff
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Job

Stream

OfflineOnline

Stream

Job

Stream

Data speed Innovation speed
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Bonus slides
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Machine learning products
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Configuration Data collection Monitoring

Size = effort Credits: “Hidden Technical Debt in
Colour = code complexity Machine Learning Systems”, 

Google, NIPS 2015

Serving 
infrastructure

Feature extraction Process 
management tools

Analysis tools

Machine 
resource 

management

Data 
verification

ML
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Data science

Mature machine learning
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Configuration Data collection Monitoring

Serving 
infrastructure

Feature extraction Process 
management tools

Analysis tools

Machine 
resource 

management

Data 
verification

ML

DataOps



www.mimeria.com

Complex business logic - MDM @ Spotify
● 10 pipelines like this
● Pipeline dev environment
● Pipeline continuous deployment 

infrastructure

One team of five engineers

30
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Complex business logic - all Hadoop @ Spotify
● 2K unique jobs, 20K daily
● ~100 teams
● Almost all features involve lake
● Multiple processing tools
● Homogeneous infrastructure

○ Storage
○ Workflow management

● 2500 nodes, 50K cores, 100+TB mem, 
100+PB store
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● Migrating to Google cloud
● 750 BigQuery users
● 3M queries = 500 PB / month


